Blue Gene Experience at the National Center for Atmospheric Research

October 4, 2006

Theron Voran voran@ucar.edu

Computer Science Section National Center for Atmospheric Research

> Department of Computer Science University of Colorado at Boulder

Why Blue Gene?

- Extreme scalability, balanced architecture, simple design
- Efficient energy usage
- A change from IBM Power systems at NCAR
- But familiar
 - Programming model
 - Chip (similar to Power4)
 - Linux on front-end and IO nodes
- Interesting research platform

Outline

- System Overview
- Applications
- In the Classroom
- Scheduler Development
- TeraGrid Integration
- Other Current Research Activities

<u>3</u>

Frost Fun Facts

Henry Tufo and Rich Loft, with Frost

- Collaborative effort
 - Univ of Colorado at Boulder (CU)
 - NCAR
 - Univ of Colorado at Denver
- Debuted in June 2005, tied for 58th place on Top500
 - □ 5.73 Tflops peak 4.71 sustained
- 25KW loaded power usage
- 4 front-ends, 1 service node
- 6TB usable storage
- □ Why is it leaning?

System Internals

Blue Gene/L system on-a-chip

More Details

Chips

- □ PPC440 @700MHZ, 2 cores per node
- □ 512 MB memory per node
- Coprocessor vs Virtual Node
- □ 1:32 IO to Compute ratio

Interconnects

GigE

direction)

JTAG/IDO

Tree (354 MB/s)

Global Interrupt

Storage

- 4 Power5 systems as GPFS cluster
- NFS export to BGL IO nodes

Frost Utilization

HOMME

्रांभ	<u>6</u>	6 9	्रतंश	S	<u></u>	ൺി	ഞ
7 6	a ,	9 9		т, с	-		-3 1
J-a	<u> </u>		- J		<u></u>	<u> </u>	<u> </u>
						~	
<u> </u>	-0-0-	Щ.	<u> </u>			-0	
ပုံစု	<u> </u>	φ	ο φ	Î	<u> </u>	्रिके	- 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
<u>6</u> -0	Ó	6-0	4	ŝ	Ĵ	Ĵ	
<u> </u>		<u>_</u>		60	6	<u></u>	-
<u>-</u> [+δ=		1 A	J K	_6 _6	0 0	- İ	⊒T I
2							<u> </u>
		1919			<u>pl</u>	<u> </u>	<u></u>
re-o	9	l otto	r and and a	6	မာ	्र	8
9 6	<u> </u>	6	<u> </u>	6	A	6 6	6 6
<u>_9∓9</u> _	<u>_977</u> 9_	6 6	0 0	6	╧┙╶┟		في ا
						<u>_171</u>	_뛰기
<u> </u>		<u> </u>		9 9	6_0	<u> </u>	<u> </u>
<u> </u>	<u>ç</u> ∔°	ল প	<u> </u>	ç ia	ക്രി	6	्रेंग
0-0			0 0				

- High Order Method Modeling Environment
- Spectral element dynamical core
- Proved scalable on other platforms
- Cubed-sphere topology
- Space-filling curves

HOMME Performance

Ported in 2004 on BG/L prototype at TJ Watson, with eventual goal of Gordon Bell submission in 2005

Serial and parallel obstacles:

- SIMD instructions
- Eager vs Adaptive routing
- Mapping strategies

Result:

 Good scalability out to 32,768 processors (3 elements per processor)

Snake mapping on 8x8x8 3D torus

HOMME Scalability on 32 Racks

- Popular codes on Frost
 - □ WRF
 - □ CAM, POP, CICE
 - MPIKAIA
 - EULAG
 - BOB
 - PETSc
- Used as a scalability test bed, in preparation for runs on 20-rack BG/W system

Classroom Access

- Henry Tufo's 'High Performance Scientific Computing' course at University of Colorado
- Let students loose on 2048 processors
 - Thinking BIG
 - □ Throughput and latency studies
 - Scalability tests Conway's Game of Life
 - □ Final projects
- Feedback from 'novice' HPC users

Cobalt

- Component-Based Lightweight Toolkit
- Open source resource manager and scheduler
- Developed by ANL along with NCAR/CU
- Component Architecture
 - Communication via XML-RPC
 - Process manager, queue manager, scheduler
- ~3000 lines of python code
- Manages traditional clusters also

http://www.mcs.anl.gov/cobalt

Cobalt Architecture

Cobalt Development Areas

- Scheduler improvements
 - Efficient packing
 - Multi-rack challenges
 - Simulation ability
 - Tunable scheduling parameters
- Visualization
 - Aid in scheduler development
 - Give users (and admins) better understanding of machine allocation
- Accounting / project management and logging
- Blue Gene/P
- TeraGrid integration

NCAR joins the TeraGrid, June 2006

TeraGrid Testbed

TeraGrid Activities

Grid-enabling Frost

- Common TeraGrid Software Stack (CTSS)
- Grid Resource Allocation Manager (GRAM) and Cobalt interoperability
- Security infrastructure

Storage Cluster

- □ 16 OSTs, 50-100 TB usable storage
- 10G connectivity
- GPFS-WAN
- Lustre-WAN

Other Current Research Activities

- Scalability of CCSM components
 - POP
- Scalable solver experiments
- Efficient communication mapping
 - Coupled climate models
 - Petascale parallelism
- Meta-scheduling
 - Across sites
 - Cobalt vs other schedulers
- Storage
 - PVFS2 + ZeptoOS
 - Lustre

Frost has been a success as a ...

- Research experiment
 - Utilization rates
- Educational tool
 - Classroom
 - Fertile ground for grad students
- Development platform
 - Petascale problems
 - Systems work

Questions?

voran@ucar.edu https://wiki.cs.colorado.edu/BlueGeneWiki

