
Dr. Louis J. Wicker
Meteorologist

NOAA National Severe Storms Laboratory

Improving Scientific
Productivity using Python:

An Example from an
Ensemble Data Assimilation

System in Meteorology

NOAA/National Severe Storms Lab

Long ago in a decade far far
away from here...

Researchers / Students in 1985 had to know:

How to program in Fortran with serial algorithms(maybe C!)

How to use a word processor

How to run a job on a big computer (JCL...ack..)

Researchers / Students in 2005 need to know:

several languages (F95, C++, csh, Python, MatLab, etc...)

parallel programming

visualization

web programming

grid computing, data base management, etc, etc....

NOAA/National Severe Storms Lab

Compiled Languages
As in ... F77, F95, F2000, C++, C, Ada, etc ...

Create fastest executing code

Are “traditional” development tools, e.g. => taught

Development cycle:

write/compile/link/run ...

debug/compile/link/run ... etc

Access to Unix filesystem, files, URL’s awkward..

Some compiled languages (F77, C ?) do not
promote the application of good software
practices like OOP, modular code, etc.

NOAA/National Severe Storms Lab

Interpreted (Scripting)
LanguagesAs in ...

Csh, Perl, Python, Ruby, Tcl, etc.
Java is “in-between”
also IDL, Matlab, Mathematica, Maple, NCL ...

Development cycle is
write/run ...
debug/run ...
debug/run ... etc.

Built-in access to Unix, Web, etc.
These languages tend to promote the development
of good software through code reuse and their
built-in high-level constructs.

NOAA/National Severe Storms Lab

Then vs Now?
Software development is part of everyday
scientific work (the computer is now the lab...)

Increased computer capability (CPU, Memory, Disk)
can run interpreted languages faster than
compiled codes were run 10-15 years ago

1990’s saw explosive development of scripting
languages (Perl, Python, Ruby, Tcl++) and OSS
software and operating systems (Linux)

Scripts enable the masses to attempt GUI
development

OSS / WWW / Information / Examples etc!

NOAA/National Severe Storms Lab

Advantages of Using
Interpreted Languages

Programs are generally written at a higher level

Modules can include both functions and main drivers => easier
development & testing

One can generate and execute code from the “inside”

Development includes testing code snippets that you are
trying to include in the modules in interpreter

eliminates more bugs up front

permits testing of new code ideas “inline”

File I/O, File I/O, File I/O!

Result: smaller code, fewer bugs, faster development

NOAA/National Severe Storms Lab

Example: Read ascii data
from file...

Page 1 of 1untitled text

Printed: Tuesday, October 3, 2006 11:37:01 AM

 964.0000 305.29 15.713!

 0.0000 305.29 15.713 -3.0730 8.4429!

 127.17 304.52 15.137 -4.4020 12.094!

 359.00 304.42 14.117 -5.1683 19.288!

 593.61 304.35 13.016 -1.8411 19.884!

 833.33 304.34 12.268 2.2744 19.839!

 1080.0 304.55 10.787 5.1683 19.288!

 1331.5 305.26 8.8552 6.9083 18.110

Input File

Fortran Code Python CodePage 1 of 1untitled text 2

Printed: Tuesday, October 3, 2006 12:48:20 PM

integer, parameter :: nmax = 10000!

integer n, ios!

real p0, t0, q0!

real, dimension(nmax) :: q, t, q, u, v!

open(10,file='data.ascii',form='formatted')!

read(10,*) p0, t0, q0!

do n = 1,nmax!

! read(10,*,iostat=ios) z(n), t(n), q(n), u(n), v(n)!

! if(ios == -1) exit!

enddo!

close(10)!

Page 1 of 1untitled text 3

Printed: Tuesday, October 3, 2006 12:49:36 PM

f = open("data.ascii", "r")!

p0, t0, q0 = f.readline()!

d = f.read().split()!

z, t, q, u, v = d[0::5],d[1::5],d[2::5],d[3::5],d[4::5]!

f.close()

NOAA/National Severe Storms Lab

Why Python?
Language uses natural syntax - most Fortran/C programmers would
understand code structure upon reading it - looks like Fortran +
CSH.....

Includes OOP, dynamic typing, regular expressions, etc.

Strong community support of numerical operations (Numeric,
Numpy, Numarray, SciPy)

Interface software to combine Python with Fortran / C / C++
exists (F2PY & SWIG)

netCDF & HDF5 interfaces exist (PyTABLES!)

Visualization interfaces (VTK, Matlibplot, NCAR graphics)

Large user community - commercial development, etc.

NOAA/National Severe Storms Lab

Numerical Weather Prediction
in 2006

Numerical weather prediction is the process where the
atmosphere fluid equations (a set of PDE’s) are discretized
on the globe, observations are used to initialize the
dependent variables, and the discrete equations are then
integrated forward in time to create a weather forecast

Problem is inherently probabilistic - especially at small
scales

Computational capability now permits probabilistic
approaches to NWP problem

NOAA/National Severe Storms Lab

Numerical Weather Prediction
in 2006

Instead of a single forecast, an ensemble of weather
forecasts (10-100 simulations) are now used to produce a
forecast that explicity estimates forecast uncertainty.

The ensemble is also useful for incorporating observations:
A process known as data assimilation.

30 years ago prediction was barely able to resolve low
and high pressure centers

Now we are talking about resolving individual convective
storms (like the OKC 3 May tornadic storm...)

NOAA/National Severe Storms Lab

Storm-scale Numerical Weather
Prediction?

SINGLE LFM Grid Point (Δx ~ 190 km)
7 vertical levels

WRF Grid (Δx ~ 4 km)
50 vertical levels

1975

A ~ 106x increase in CPU!
One hour of WRF computer time today would require > 4 years to run on the 1975 computer!

DFW

2005

NOAA/National Severe Storms Lab

Terminology

Weather prediction model (the forecast model) predicts the weather on scales of
~ 1 km.

Data assimilation: An algorithm whereby observations from the atmosphere are
used to create the initial conditions for the forecast model.

Radar observations: Doppler velocity and reflectivity from the WSR-88D

Kalman filter: an algorithm that takes as input an ensemble of 3D forecasted
weather fields (wind, pressure, rain, etc.) and from them create mathematical
relationships between the model fields and the radar observations such that at
the end, the model data match the radar data in some least squares sense.

Ensemble of model forecasts is used to approximate the evolution of the
covariance matrix from “classic” Kalman filter.

Cannot evolve covariance matrix directly (deg. of freedom~108)

Storm-scale NWP needs
storm-scale data: Radar data!

NOAA/National Severe Storms Lab

How to Deal with this?

Essentially this is managed via an OOP + database
approach (this problem can generate thousands of files...)

Model and EnKF information (filenames, data files), run
parameters (time steps, Kalman filter coefficients, error
variances, etc.) are stored in a Python dictionary and
stored to a file via pickling.

“Glue” fortran codes together using Python classes

The Problem: Manage the input radar data streams, initializating
then starting/stopping for each radar sweep 50-100 model runs,
controlling the Kalman filter operations, dealing with about 1000
parameters to track (and change) used by the models and the

Kalman filter, and the statistical output from all of this..

NOAA/National Severe Storms Lab

Python is the “Glue”
Create Python classes to “hide” all the internal gobbly-gook...

Three class objects

pyDART: observation class

pyEnKF: Kalman filter class

pyEnsemble: forecast model class

Each python class has its own data and methods for
executing operations needed

Run forecast model, dump observations for filter, create input
namelists for fortran, etc.

NOAA/National Severe Storms Lab

run_ENKF.py Python Script Outline

reads parameters for model ensemble: file prefix name, # of members,
date and time of integration, etc.

reads parameters for Kalman filter: what variables to be adjusted by the
assimilation, observation bias and variance, etc.

read observation files: Determine what the integration blocks looks like based on
the availability of the radar observations e.g. Time = [22:08-22:10,
22:10-22:16, 22:16-22:17]

For each block in Time:
what time is it?
are there observations?
Yes? THEN

Create observation header file for enkf
Call Kalman filter

No? THEN
for each member in ensemble, create NAMELIST file for params
run model and integrate each member to next time in TIME

NOAA/National Severe Storms Lab

Example of our code....

Page 1 of 6run_DARTosse.py

Printed: Tuesday, October 3, 2006 7:16:25 PM

#!/usr/bin/env python!

#!

System imports!

#!

import os!

import time as cpu!

import sys, glob!

import string!

import Numeric!

from optparse import OptionParser!

#!

Add search path to find out Python modules!

#!

sys.path.append("./Python")!

#!

Import local modules!

#!

import clock!

import param!

import util!

from ensemble import *!

!

#---!

#!

Command line arguments!

!

usage = "usage: %prog [options] arg"!

parser = OptionParser(usage)!

parser.add_option("-f", "--file", dest="file", type="string", help="Name of run and/or

ensemble object file (e.g., may20.exp")!

!

(options, args) = parser.parse_args()!

!

if options.file == None:!

 print!

 parser.print_help()!

 print!

 print "ERROR: configuration file not defined...EXITING"!

 print!

 sys.exit(0)!

!

#---!

!

Simulation run parameters !

!

experiment = ReadEnsemble(options.file)!

!

run_dict = param.read(experiment.config_file, 'run_ensemble')!

init_dict = param.read(experiment.config_file, 'init_background_dict')!

enkf_dict = param.read(experiment.config_file, 'enkf_dict')!

!

trestart = run_dict["trestart"]!

thistory = run_dict["thistory"]!

tvis5d = run_dict["tvis5d"]!

tprint = run_dict["tprint"]!

ugrid = run_dict["ugrid"]!

vgrid = run_dict["vgrid"]!

Process command
line arguments

Remind user how to
run code

Read in python
pickle object with

ensemble info

Extract parameters
out of run dictionary

NOAA/National Severe Storms Lab

Time
Integration

Loop

Page 1 of 1untitled text

Printed: Tuesday, October 3, 2006 7:26:18 PM

START time loop!

while time < stop:! ! ! # Find the next observation time that is >= the current time.!

!

 if ObTimeSec[TimeIndex] > time:!

 td = ObTimeSec[TimeIndex] - time!

 NextTime = int(round(time + dt*round(td / dt)))!

 print 'RUN_DARTosse: TimeIndex = ', TimeIndex!

 print 'RUN_DARTosse: ObTimeSec = ', ObTimeSec[TimeIndex]!

 print 'RUN_DARTosse: Time = ', time!

 print 'RUN_DARTosse: NextTime = ', NextTime!

!

Integrate ensemble members to next observation time.!

!

 print 'RUN_DARTosse: CALLING ThreadTimeStep at time ',NextTime!

!

 if run_model:!

experiment.SetRunParams(time,NextTime,trestart,thistory,tvis5d,tprint,ugrid,vgrid)! !

 experiment.ThreadTimeStep(nthreads=nthreads)!

!

 print 'RUN_DARTosse: COMPLETED ThreadTimeStep at time: ',NextTime!

 else:!

 NextTime = time!

 !

Assimilate observations!

!

 for x in ObFiles:!! ! ! # Search file list..!

 if verbose:!

 print 'RUN_DARTosse: Name of observation file ',x!

 if x.find(str(ObTimeSec[TimeIndex])) != -1:!

 utc = ObTime[TimeIndex]!

 strin = "%s %s %s %s %s %s %s '%s'" %

(ObFormat[TimeIndex],utc[0],utc[1],utc[2],utc[3],utc[4],utc[5],x)!

 if verbose:!

 print!

 print 'RUN_DARTosse: command written to enkf obfile list ', strin!

 ofile = open(ObFileList, 'w+')!

 ofile.write(strin)!

 ofile.close()!

 cmd = 'enkf ' + str(NextTime) + ' ' + ObFileList + ' ' + ObTableFile + ' ' +

TrueState[TimeIndex] + ' ' + str(nxyz3dtruth)!

 print !

 print 'RUN_DARTosse: EnKF being called: ',cmd!

 print !

 if run_enkf:!

 os.system(cmd)!

 print 'RUN_DARTosse: COMPLETED ENKF for data file ',x,' at time: ',NextTime!

 print !

 print 'RUN_DARTosse: COMPLETED ENKF for all data files at time ',NextTime!

 !

Increment time and observation file time indices!

!

 time = NextTime ! ! ! ! # Set time to NextTime!

!

 TimeIndex = TimeIndex + 1!! # Increment TimeIndex (for ObFiles) by 1!

 print "RUN_DARTosse: Integration has been completed through ",time!

#END TIME INTEGRATE LOOP

Model object
method for

setting model
parameters

Model object
method for

running fcst models
simultaneously

(parallel)

All this string
processing would

really, really hurt in
Fortran. Don’t try

this at home....

NOAA/National Severe Storms Lab

Comments
At this point - Python is simply used as a string/
shell/command processor. Fortran codes are the
“executables” that Python controls.

Is all this doable in Fortran: Yes, very painfully

How about Csh? Yes, perhaps as painfully

Perl? Ruby? Sure - because at this point the
Fortran algorithms and python are separated.

Can we integrate things further (and do we want
to?)

NOAA/National Severe Storms Lab

Should we go further....?
F2PY can wed F77/F95 code to Python such that fortran
modules can be loaded into the interpreter.

Advantages:

Removes the need for passing information through files -
messy

Can use python to store metadata about Fortran variables
- messy in F95

Python has excellent File I/O modules - reading and
writing data to netCDF/HDFx in Python is far simpler in
code than Fortran

OOP programming in Python is far easier than OOP
programing in F95 (I have tried...)

NOAA/National Severe Storms Lab

Should we go further....?
Disadvantages:

much more machine dependent code (F2PY works on
32/64 bit, but there are a few issues)

Data needs to be stored in row major order in Python -
doable, but creates conversion problems if Python is used
for the I/O

Python 2.5 is now 64 bit, but not all needed OSS code is
64 bit friendly. Our EnKF application needs large
memory (> 4 GB)

Bottom line: If problem is I/O intensive and big memory,
better off leveraging existing code and “gluing” the various
Fortran applications together with Python.

NOAA/National Severe Storms Lab

Final Comments
“PyEnCOMMAS” application developed and run on Mac (Intel
& PPC) and 64P SGI Altix.

6 people in NSSL research group

most knew only F90/CSH.

Learning Python was relatively easy

OOP concepts somewhat harder

All believe that effort was worthwhile - management of
EnKF application is much easier task

Few cross-platform issues (mostly plotting crap)

 copy of talk and other Python info available at:

http://www.nssl.noaa.gov/users/ljwicker/public_html/

